If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-18x^2+19x-5=0
a = -18; b = 19; c = -5;
Δ = b2-4ac
Δ = 192-4·(-18)·(-5)
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-1}{2*-18}=\frac{-20}{-36} =5/9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+1}{2*-18}=\frac{-18}{-36} =1/2 $
| n/2=3/5 | | =52−4y16 | | 9x+2=7x-24 | | 13=9r+8 | | 2x-1/3x=0 | | -9x^2-9x+28=0 | | -3d+21=6 | | 2(2x-2)=9x | | 12(x+7)=60 | | -5x(3x+4)+2=0 | | (x-3)/4=0 | | 12v+10v14=80 | | -19+x=-20 | | 2+x^-10=2^5 | | 5–2j=1 | | 7x+3(4x-1)=14 | | 2(5+3)=6x-3 | | (2x+3)(5-3x)=0 | | x/(17-x)=5/12 | | 3=v/6 | | 2/3x=1/3x-6 | | x^2=49/50 | | 3x+1+41=180 | | 90=5p+20 | | 1/2n+3=6 | | -3(x+1)+5x=-1 | | 6x2-x-1=0 | | 7x+5/4=x+7/3+5 | | 4+2p=10(53p−2) | | -18=-9+n | | 2|x+5.3|=4.2 | | 11=13-q |